Modulation of aldosterone-induced stimulation of ENaC synthesis by changing the rate of apical Na+ entry.

نویسندگان

  • L Dijkink
  • A Hartog
  • C H Van Os
  • R J Bindels
چکیده

Primary cultures of immunodissected rabbit connecting tubule and cortical collecting duct cells were used to investigate the effect of apical Na+ entry rate on aldosterone-induced transepithelial Na+ transport, which was measured as benzamil-sensitive short-circuit current (I(sc)). Stimulation of the apical Na+ entry, by long-term short-circuiting of the monolayers, suppressed the aldosterone-stimulated benzamil-sensitive I(sc) from 320 +/- 49 to 117 +/- 14%, whereas in the presence of benzamil this inhibitory effect was not observed (335 +/- 74%). Immunoprecipitation of [(35)S]methionine-labeled beta-rabbit epithelial Na+ channel (rbENaC) revealed that the effects of modulation of apical Na+ entry on transepithelial Na+ transport are exactly mirrored by beta-rbENaC protein levels, because short-circuiting the monolayers decreased aldosterone-induced beta-rbENaC protein synthesis from 310 +/- 51 to 56 +/- 17%. Exposure to benzamil doubled the beta-rbENaC protein level to 281 +/- 68% in control cells but had no significant effect on aldosterone-stimulated beta-rbENaC levels (282 +/- 68%). In conclusion, stimulation of apical Na+ entry suppresses the aldosterone-induced increase in transepithelial Na+ transport. This negative-feedback inhibition is reflected in a decrease in beta-rbENaC synthesis or in an increase in beta-rbENaC degradation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of altered Na+ entry on expression of apical and basolateral transport proteins in A6 epithelia.

In several in vivo settings, prolonged alterations in the rate of apical Na+ entry into epithelial cells alter the ability of these cells to reabsorb Na+. We previously modeled this load dependence of transport in A6 cells by either decreasing Na+ entry via apical Na+ removal or amiloride or enhancing Na+ entry by chronic short-circuiting (Rokaw MD, Sarac E, Lechman E, West M, Angeski J, Johnso...

متن کامل

Sodium transport is modulated by p38 kinase-dependent cross-talk between ENaC and Na,K-ATPase in collecting duct principal cells.

In relation to dietary Na(+) intake and aldosterone levels, collecting duct principal cells are exposed to large variations in Na(+) transport. In these cells, Na(+) crosses the apical membrane via epithelial Na(+) channels (ENaC) and is extruded into the interstitium by Na,K-ATPase. The activity of ENaC and Na,K-ATPase must be highly coordinated to accommodate variations in Na(+) transport and...

متن کامل

AS160 Modulates Aldosterone-stimulated Epithelial Sodium Channel Forward Trafficking

Aldosterone-induced increases in apical membrane epithelial sodium channel (ENaC) density and Na transport involve the induction of 14-3-3 protein expression and their association with Nedd4-2, a substrate of serum- and glucocorticoid-induced kinase (SGK1)-mediated phosphorylation. A search for other 14-3-3 binding proteins in aldosterone-treated cortical collecting duct (CCD) cells identified ...

متن کامل

Epithelial sodium channel regulated by aldosterone-induced protein sgk.

Sodium homeostasis in terrestrial and freshwater vertebrates is controlled by the corticosteroid hormones, principally aldosterone, which stimulate electrogenic Na+ absorption in tight epithelia. Although aldosterone is known to increase apical membrane Na+ permeability in target cells through changes in gene transcription, the mechanistic basis of this effect remains poorly understood. The pre...

متن کامل

SGK1 activates Na+-K+-ATPase in amphibian renal epithelial cells.

Serum- and glucocorticoid-induced kinase 1 (SGK1) is thought to be an important regulator of Na(+) reabsorption in the kidney. It has been proposed that SGK1 mediates the effects of aldosterone on transepithelial Na(+) transport. Previous studies have shown that SGK1 increases Na(+) transport and epithelial Na(+) channel (ENaC) activity in the apical membrane of renal epithelial cells. SGK1 has...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 281 4  شماره 

صفحات  -

تاریخ انتشار 2001